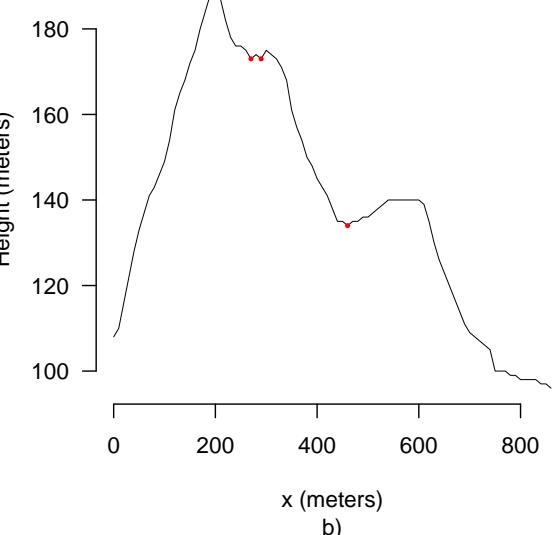

Homework #3

Ismail SEZEN


Due date Dec 8, 2021 00:00 EET

Maunga Whau (Mt Eden) is one of about 50 volcanos in the Auckland volcanic field. This data set (`?volcano`) gives topographic information for Maunga Whau on a 10m by 10m grid. *Figure a)* shows contour plot of the volcano Maunga Whau. *Figure b)* shows the cross-section of the volcano at $y = 400\text{m}$. Answer the following questions in the light of this information.

```
z <- volcano # Store volcano data in z
x <- (0:(nrow(z) - 1)) * 10 # x-values
y <- (0:(ncol(z) - 1)) * 10 # y-values
y400 <- z[,41] # heights at y = 400m
```


a)

b)

Q1:(10pts) Answer the questions below using R;

1. What is the *maximum height* of the volcano?
2. What is the $[x, y]$ coordinate of maximum height?
3. What is the *minimum height* of the volcano?
4. What is the $[x, y]$ coordinate of minimum height?

Q2:(30pts) Data at 6 cells in the matrix (`z`) was removed because of quality assurance (*run the command below*).

```
z <- volcano # Store volcano data in z
set.seed(1)
indices <- round(runif(6, 1, length(z))) # indices to set NA
z[indices] <- NA # set to NA in purpose
```

1. Find the x and y coordinates of NAs.

2. Fill the **NA**s by mean of the 8 values surrounding **NA** cell.

Q3:(30pts) *Figure b)* shows the cross-section of the volcano at $y = 400$ m and local minimum heights on the volcano (*red points*). Write an R expression to detect/find the local minimums in the `y400` vector. How far the local minimums are away from the left (zero)? Discuss your results with the *figure b)* (**Hint:** `?diff`, `?sign`, `?which`)

Q4:(30pts) Find slopes at the locations $y = 400$ and $x = \text{seq}(5, 855, 10)$ meters. What are the location and value of steepest slope (*negative or positive*)? What would be the best place for a climber needs a rest?

Notes:

- Please, email your answers privately to `sezenismail@gmail.com`.
- Answers/codes should be in a text file named `name_surname.r`.
- Do not use `for`-loop statements.
- For each answer, write a comment line like `# A1` and write your answer below.
- Write your conclusions as *R comments* in the text file.
- If you didn't understand a question clearly, email your question to `ysb801e@googlegroups.com`.